Railway applications—Track — Switches and crossings —

Part 8: Expansion devices
National foreword

This British Standard is the UK implementation of EN 13232-8:2007+A1:2011. It supersedes BS EN 13232-8:2007, which is withdrawn.

The start and finish of text introduced or altered by amendment is indicated in the text by tags. Tags indicating changes to CEN text carry the number of the CEN amendment. For example, text altered by CEN amendment A1 is indicated by [A1].

The UK participation in its preparation was entrusted by Technical Committee RAE/2 Railway Applications - Track.

A list of organizations represented on this subcommittee can be obtained on request to its secretary.

This publication does not purport to include all the necessary provisions of a contract. Users are responsible for its correct application.

Compliance with a British Standard cannot confer immunity from legal obligations.

Amendments/corrigenda issued since publication

<table>
<thead>
<tr>
<th>Date</th>
<th>Comments</th>
</tr>
</thead>
</table>
Railway applications - Track - Switches and crossings - Part 8: Expansion devices

This European Standard was approved by CEN on 17 February 2007 and includes Amendment 1 approved by CEN on 13 September 2011.

CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CEN member.

This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CEN member into its own language and notified to the CEN-CENELEC Management Centre has the same status as the official versions.

CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland and United Kingdom.
Contents

Foreword ... 3
Introduction .. 5
1 Scope .. 6
2 Normative references ... 6
3 Terms and definitions ... 6
3.1 General definitions .. 6
3.2 Main types of expansion devices ... 8
4 Design ... 13
4.1 Design inputs .. 13
4.2 Design rules .. 14
4.2.1 General rules ... 14
4.2.2 Wheel/rail interaction ... 15
4.2.3 Specific rules ... 15
4.3 Performance requirements ... 16
4.4 Materials ... 16
4.5 Design output .. 17
4.5.1 Detailed component plans ... 17
4.5.2 Assembly documents ... 17
5 Tolerances and inspection ... 17
5.1 General ... 17
5.2 Tools and instruments ... 17
5.3 Critical dimensions ... 17
5.4 Adjustment switch (bayonet type) ... 18
5.5 Expansion switch .. 23
5.6 Certification ... 32
5.7 Methods of examination for structural defects .. 32
5.7.1 Visual ... 32
5.7.2 Dye penetrant and/or magnetic particle .. 32
6 Longitudinal resistance testing ... 33
6.1 Test method ... 33
6.2 Test results ... 33
7 Acceptance testing .. 33
8 Limits and extent of supply ... 34
9 Identification marks .. 34

Foreword

This document (EN 13232-8:2007+A1:2011) has been prepared by Technical Committee CEN/TC 256 “Railway applications”, the secretariat of which is held by DIN.

This European Standard shall be given the status of a national standard, either by publication of an identical text or by endorsement, at the latest by April 2012, and conflicting national standards shall be withdrawn at the latest by April 2012.

This document has been prepared under a mandate given to CEN/CENELEC/ETSI by the European Commission and the European Free Trade Association, and supports essential requirements of EU Directive 2008/57/EC.

For relationship with EU Directive 2008/57/EC, see informative Annex ZA, which is an integral part of this document.

This document includes Amendment 1, approved by CEN on 2011-09-13.

This document supersedes EN 13232-8:2007.

The start and finish of text introduced or altered by amendment is indicated in the text by tags.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CEN [and/or CENELEC] shall not be held responsible for identifying any or all such patent rights.

This series of standards “Railway applications — Track — Switches and crossings” covers the design and quality of switches and crossings in flat bottomed rail. The list of Parts is as follows:

— Part 1: Definitions
— Part 2: Requirements for geometric design
— Part 3: Requirements for wheel/rail interaction
— Part 4: Actuation, locking and detection
— Part 5: Switches
— Part 6: Fixed common and obtuse crossings
— Part 7: Crossings with moveable parts
— Part 8: Expansion devices
— Part 9: Layouts

Part 1 contains terminology used throughout all parts of the standard. Parts 2 to 4 contain basic design guides and are applicable to all switch and crossing assemblies. The latter parts, from 5 onwards, deal with particular types of equipment, including their tolerances. Part 9 defines the functional and geometric dimensions and tolerances for layout assemblies. These use Parts 1 to 4 as a basis.

The following terms are used within to define the parties involved in using the EN as the technical basis for a transaction:
Customer The Operator or User of the equipment, or the Purchaser of the equipment on the User's behalf.

Supplier The body responsible for the use of the EN in response to the Customer's requirements.

According to the CEN/CENELEC Internal Regulations, the national standards organizations of the following countries are bound to implement this European Standard: Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland and United Kingdom.
Introduction

An expansion device is a device which permit longitudinal relative rail movement of two adjacent rails, while maintaining correct guidance and support.

These longitudinal movements may be required in:

a) interrupted CWR (continuously welded rail);

b) structure movement;

c) or a combination of both.
1 Scope

This part of EN 13232 covers the following subjects: to establish a working terminology for expansion devices, for their constituent parts and for the types; to specify the minimum manufacturing requirements for expansion devices and their constituent parts; to formulate codes of practice for inspection and tolerances; to define the method by which expansion devices and their parts should be identified and traced.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

EN 13146-1, Railway applications — Track — Test methods for fastening systems — Part 1: Determination of longitudinal rail restraint

EN 13232-2, Railway applications — Track — Switches and crossings — Part 2: Requirements for geometric design

EN 13232-3, Railway applications — Track — Switches and crossings — Part 3: Requirements for wheel/rail interaction

EN 13232-9, Railway applications — Track — Switches and crossings — Part 9: Layouts

EN 13715, Railway applications — Wheelsets and bogies — Wheels — Wheels tread

UIC 510-2, Trailing stock: wheels and wheelsets — Conditions concerning the use of wheels of various diameters

3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

3.1 General definitions

3.1.1 hand (of half set) – adjustment switch (bayonet type)
LH (left hand) half set or RH (right hand) when viewed standing in the track gauge and facing the tips of the inside rails.

With check rails, there may be two LH or two RH half sets, see Figure 6, or opposite hand half sets

3.1.2 hand (of half set) – expansion switch
LH half set or a RH half set when viewed standing in the track gauge and facing the toes of the expansion switch

3.1.3 expansion capacity C
maximum permissible relative longitudinal movement between the two rails, where:

\[C = D_{\text{max}} - D_{\text{min}} \]
3.1.4 **relative displacement rail / support**
maximum permissible relative longitudinal movement between the rail (switch or stock rail) and the corresponding support (base plate or bearer)

3.1.5 **mean position**
position where the expansion capacity and the relative displacement of rails are half way, and the bearers are in their nominal position

3.1.6 **design position**
nominal position where the expansion capacity and the relative displacement of rails are half way, especially where shrinkage of concrete structures, for example, will shift the mean position

\[M = \frac{D_{\text{max}} - D_{\text{min}}}{2} \]
3.2 Main types of expansion devices

3.2.1 adjustment switch (bayonet type)
expansion device with interruption of the running edge

3.2.1.1 Adjustment switch without check rails (both sides moveable)

Key
1 slide chair
2 low restrain fastening
3 standard fastening
4 moveable rails
5 bearer straps
R reference point

Figure 4 — Adjustment switch – both sides moveable
3.2.1.2 Adjustment switch without check rails (one side moveable)

Key

1 slide chair
2 low restrain fastening
3 standard fastening
4 moveable rails
1 3 6
5 fixed rails
5 6 bearer straps
R reference point

Figure 5 — Adjustment switch – one side moveable
3.2.1.3 Adjustment switch with check rails (both sides moveable)

Figure 6 — Adjustment switch with check rails – both sides moveable

Key
1 slide chair
2 low restrain fastening
3 standard fastening
4 moveable rails
5 check rails
6 bearer strap
R reference point
3.2.1.4 Adjustment switch with check rails (one side moveable)

Figure 7 — Adjustment switch with check rails – one side moveable

Key

1. slide chair
2. low restrain fastening
3. standard fastening
4. moveable rails
5. fixed rails
6. check rails
7. bearer strap
R. reference point

3.2.2 expansion switch

expansion device without interruption of the running edge
3.2.2.1 Expansion switch with moveable stock rails

Key
1 slide chair
2 low restrain fastening
3 standard fastening
4 moveable stock rails
5 fixed switch rails
6 bearer strap
R reference point

Figure 8 — Expansion switch – moveable stock rails

3.2.2.2 Expansion switch with moveable switch rails

Key
1 slide chair
2 low restrain fastening
3 standard fastening
4 fixed stock rails
5 moveable switch rails
6 bearer strap
R reference point

Figure 9 — Expansion switch – moveable switch rails
3.2.2.3 Expansion switch both sides moveable

![Diagram of expansion switch both sides moveable]

Key

1. slide chair
2. low restrain fastening
3. standard fastening
4. moveable stock rails
5. moveable switch rails
6. bearer strap
R. reference point

Figure 10 — Expansion switch – both sides moveable

4 Design

4.1 Design inputs

The following information shall be supplied by the customer to the supplier:

- axle load;
- gross annual tonnage;
- train speed;
- nominal track gauge;
- direction of traffic;
- track geometry.

In addition the customer shall decide:

- the type of expansion device to be applied;
- the expansion capacity of the expansion device as well as the maximum displacement rail/support. If the latter is not provided, it shall be estimated to be half the expansion capacity of the device;
- the basic rail section and grade;
- the rail inclination to be applied through the expansion device;
- the fastening system to be applied;
- the nominal support spacing;
— type of support structure, e.g. bearer, slab track;
— special requirements, e.g. limits of vertical and horizontal end rotations, limits of local vertical and horizontal radii of track, limits of uplift movements on rail supports adjacent to the gap between the structure and the abutment or between the structures.

The following elements shall be agreed between customer and supplier:
— the special rail profiles to be applied for the construction (if applicable);
— the constructional length;
— the machining details of the rail sections;
— the maximum support spacing in service.

4.2 Design rules

4.2.1 General rules

4.2.1.1 Support panel

In the case where 1 side is moveable, a number of bearers shall be restrained from moving. This is normally a minimum of four bearers. The incoming rails shall have low resistance fastenings on the restrained bearers to permit movement of the moveable rails.

All restrained bearers are linked to each other. This can be achieved by the use of a bearer strap, guard rail, continuous base plate etc.

In the case when both sides are moveable, the bearers shall be restrained from moving by means of a steel strap. This is to ensure bearer distance does not change and prohibits the bearers from moving from their nominal position during operation and/or maintenance.

4.2.1.2 Low restraint fastenings

The fastening restraint shall in any case be smaller than the longitudinal restraint of the bearer in the ballast. The creep resistance shall be between 0 and 5 kN per base plate. This resistance shall be checked in accordance with EN 13146-1.

4.2.1.3 Slide chairs

The slide chair shall permit the movement of one or both rails, while offering guidance to the switch and/or stock rail depending on the type used, with resistance in the range 0 to 5 kN. The resistance shall be checked in accordance with EN 13146-1.

4.2.1.4 Total longitudinal resistance

The total longitudinal resistance of the expansion device shall be limited in order to permit thermal forces to be reduced at the end of the adjacent track panels.

In the case of a prototype the total longitudinal resistance shall be demonstrated as described in 6.1.

For curved expansion devices the maximum force may be higher. The limiting force shall be supplied by the customer.
4.2.1.5 Special requirements

Achievable maximum bearer spacing or vertical and horizontal angular rotations may exceed existing limits for stress in rails. Special measures such as reinforcing of rails by fishplates, ancillary load distributing rails, auxiliary beams and elastic supports may be used to reduce the stress in the rail or to accommodate vertical and horizontal angular rotations.

4.2.2 Wheel/rail interaction

Functional and safety dimensions and wheel/rail interaction shall be considered during the design as described in EN 13232-3 and EN 13232-9.

Lateral movement of the switch toe due the longitudinal movement shall be considered to avoid secant contact.

4.2.3 Specific rules

4.2.3.1 Adjustment switches with interruption of the running edge

Wheel transfer areas shall be machined to match the original rail section on the running edge.

Attention shall be drawn to the false flange clearance machining or worn wheel ramps on the non-running side of the rail.

This construction type leads to a gap in the running edge. If this gap becomes too large then check rails are required. With wheels in accordance with EN 13715 and UIC 510-2 the maximum permitted gap is 200 mm.

A reference point shall be made on the external bayonet in the vicinity of the internal bayonet, in order to check the relative position of both rails.

4.2.3.2 Expansion switches

A detailed geometry plan shall be drawn in accordance to EN 13232-2.

Gauge may vary as a consequence of the construction type.

Switch rail only moves: gauge variation occurs.

Stock rail only moves: gauge variation does not normally occur.

Both switch and stock rail move: gauge variation occurs but is normally not as big as when only switch rail moves.

These variations in gauge shall be considered during the design process. The effect on the resultant angle of attack may be increased due to α_1 and α_2 depending on the direction of traffic (see Figure 11). Predominantly on curved track this shall be taken into account. The angle of attack shall be restricted as described in EN 13232-9.
Figure 11 — Angles of attack

Attention shall be drawn to machining the top of the stock rail end to accommodate false flange clearance or worn wheel ramps.

4.2.3.3 Reference points

A reference point shall be made at the stock rail in the vicinity of the tongue tip in order to check the relative position of both rails.

The actual position shall be checked by reference points. The mean position is used for design and acceptance. Reference points, marked on the adjustment or expansion switch, are also used for installation.

In the case of expected major asymmetrical movements, e.g. shrinkage of concrete structures, the mean or neutral position shall be a defined "design position".

4.3 Performance requirements

The performance criteria of expansion devices shall be based on information given by the customer. The design and selection of type of expansion devices will be influenced by capacity, guidance, gauge variation due to longitudinal movement and site conditions. Information supplied in 4.1 and 4.2 shall be used in the selection of the type of expansion devices and their design.

4.4 Materials

The grade and specification of the rails to be used shall be specified by the customer. Unless the customer defines otherwise, the rail material and profile shall conform to the relevant European Standard. The materials of fabricated base plates, blocks etc. shall be specified using the respective European Standard. In the absence of an European Standard, the materials shall be defined by their mechanical and chemical characteristics.

All bolts and other fixing devices shall be minimum Grade 5.6. All cast iron fittings shall be manufactured to minimum Grade 200. All spheroidal graphite (SG) iron fittings shall be manufactured to minimum Grade 500/7.

The use of other materials such as cast manganese, pads, insulators, special slide surfaces etc. shall be agreed between customer and supplier.
4.5 Design output

4.5.1 Detailed component plans

The individual components should be illustrated on the detailed drawings. These drawings shall contain the following information:

- machining profiles;
- sets, bending details;
- position of the running edge and machining reference plane;
- drillings including the pertinent tolerances;
- surface markings;
- material.

4.5.2 Assembly documents

As a result of the design, the supplier shall prepare the assembly documents in accordance with the information given in EN 13232-9.

In addition these documents shall contain gauge modifications of the expansion device when the rail components move to their extreme limits.

5 Tolerances and inspection

5.1 General

The following section defines the tolerances of the critical dimensions, which shall be verified. These tolerances are based on workshop temperatures or a predefined temperature specified by the customer.

If the customer imposes restrictions on the tolerances given in the following, they shall be stated in the tender documents.

5.2 Tools and instruments

The customer may request drawings/details of tools/measuring instruments for verification. Drawings/details shall be submitted on request for approval. All tools/instruments shall be made available by the supplier on request.

For inspection of the components, adequate measuring instruments shall be used, depending on the geometry of the component and on the required accuracy. The appropriate measuring instruments shall be agreed between customer and manufacturer.

It is the manufacturer's responsibility to guarantee dimensional accuracy and to ensure that the inspection is carried out with the appropriate measuring instruments.

5.3 Critical dimensions

The following dimensions shall be verified with the device in its mean position as part of the inspection process and a record will be kept for inspection by the customer on request. Any sharp edges shall be de-burred.
5.4 Adjustment switch (bayonet type)

Table 1 — Rail (fixed and/or moveable)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
<th>Tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not shown</td>
<td>Total length of rail</td>
<td>±3 mm up to 24 m length</td>
</tr>
<tr>
<td></td>
<td></td>
<td>±4 mm greater than 24 m</td>
</tr>
<tr>
<td>SR</td>
<td>Straightness of the running edge</td>
<td>±1 mm and 0,5 mm/1 500 mm</td>
</tr>
<tr>
<td></td>
<td>(Figure 12 / 14)</td>
<td></td>
</tr>
<tr>
<td>SR</td>
<td>Course of the curve of the running edge</td>
<td>±1 mm and 0,5 mm/1 500 mm</td>
</tr>
<tr>
<td></td>
<td>(Figure 13 / 14)</td>
<td></td>
</tr>
<tr>
<td>IM</td>
<td>Inclination of the machined contact surface</td>
<td>±0,5°</td>
</tr>
<tr>
<td></td>
<td>(Figure 15)</td>
<td></td>
</tr>
<tr>
<td>Not shown</td>
<td>Diameter of fishbolt holes</td>
<td>+1 mm / -0,5 mm</td>
</tr>
<tr>
<td>Not shown</td>
<td>Holes position relative to fishing surface</td>
<td>±1 mm</td>
</tr>
<tr>
<td>Not shown</td>
<td>Holes position relative to end of rail</td>
<td>±1,5 mm (for temporary fishplating</td>
</tr>
<tr>
<td></td>
<td></td>
<td>±3 mm)</td>
</tr>
<tr>
<td>Not shown</td>
<td>Chamfer of the holes</td>
<td>min. 0,5 mm</td>
</tr>
<tr>
<td>Not shown</td>
<td>Roughness of machined running surface areas</td>
<td>Ra 6,3</td>
</tr>
</tbody>
</table>

Table 2 — Half set of adjustment switches

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
<th>Tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>LS</td>
<td>Constructional length (Figure 16)</td>
<td>±6 mm up to 24 m length</td>
</tr>
<tr>
<td></td>
<td></td>
<td>±8 mm greater than 24 m</td>
</tr>
<tr>
<td>SR</td>
<td>Straightness of the running edge (Figure 12 / 14)</td>
<td>±1 mm and 0.5 mm/1 500 mm</td>
</tr>
<tr>
<td>SR</td>
<td>Course of the curve of the running edge (Figures 13 / 14)</td>
<td>±1 mm and 0.5 mm/1 500 mm</td>
</tr>
<tr>
<td>GH</td>
<td>Close gap at rail head in the parallel contact area during inspection (Figure 17)</td>
<td>max. 0.25 mm</td>
</tr>
<tr>
<td>GF</td>
<td>Gap at rail foot (Figure 17)</td>
<td>max. 0.5 mm</td>
</tr>
<tr>
<td>LC</td>
<td>Lateral clearance at the slide chair (Figure 17)</td>
<td>> 0 max. gap 1 mm</td>
</tr>
</tbody>
</table>

Table 3 — Full set of adjustment switches

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
<th>Tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td>Gauge (Figure 16)</td>
<td>This tolerance shall be in accordance with the tolerance on the surrounding plain line track</td>
</tr>
<tr>
<td>CG</td>
<td>Check gauge (Figure 16)</td>
<td>This tolerance shall be based on functional and safety dimensions as described in EN 13232-9</td>
</tr>
</tbody>
</table>
Key
1 theoretical running edge
SR course of the running edge

Figure 12 — Alignment of running edge (straight)

Key
1 theoretical running edge
SR course of the curve

Figure 13 — Alignment of running edge (curved)
Dimensions in millimetres

Figure 14 — Local straightness

Key

1 theoretical running edge
SR course of the running edge

Figure 15 — Inclination

Key

IM inclination of the machined contact surface
Key

- **G** gauge
- **CG** check gauge
- **LS** overall constructional length

Figure 16 — Adjustment switch parameters

Key

- **GH** contact between rail heads
- **LC** contact between rail and stud
- **GF** contact between rail feet

Figure 17 — Critical dimensions for adjustment switches – rail contact and rail/stud contact
5.5 Expansion switch

Table 4 — Stock rail

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
<th>Tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>LS</td>
<td>Total length of stock rail (Figure 18)</td>
<td>±3 mm up to 24 m length, ±4 mm greater than 24 m</td>
</tr>
<tr>
<td>SR</td>
<td>Straightness of the running edge (Figure 12 / 14)</td>
<td>±1 mm and 0.5 mm/1 500 mm</td>
</tr>
<tr>
<td>SR</td>
<td>Course of the curve of the running edge (Figure 13 / 14)</td>
<td>±1 mm and 0.5 mm/1 500mm</td>
</tr>
<tr>
<td>HM</td>
<td>Height at machined area (Figure 19)</td>
<td>±0,5 (+ tolerance of height of rail)</td>
</tr>
<tr>
<td>IM</td>
<td>Inclination of the machined contact surface (Figure 19)</td>
<td>±0,5°</td>
</tr>
<tr>
<td>Not shown</td>
<td>Diameter of fishbolt holes</td>
<td>+1 mm / -0,5 mm</td>
</tr>
<tr>
<td>Not shown</td>
<td>Holes position relative to fishing surface</td>
<td>±1 mm</td>
</tr>
<tr>
<td>Not shown</td>
<td>Holes position relative to end of rail</td>
<td>±1,5 mm (for temporary fishplating ±3 mm)</td>
</tr>
<tr>
<td>Not shown</td>
<td>Chamfer of the holes</td>
<td>min. 0,5 mm</td>
</tr>
<tr>
<td>Not shown</td>
<td>Roughness of machined running surface areas</td>
<td>Ra 6,3</td>
</tr>
</tbody>
</table>
Table 5 — Switch rail

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
<th>Tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>LA</td>
<td>Total length of switch rail (Figure 18)</td>
<td>±3 mm up to 24 m length</td>
</tr>
<tr>
<td></td>
<td></td>
<td>±4 mm greater than 24 m</td>
</tr>
<tr>
<td>SR</td>
<td>Straightness of the running edge (Figure 12 / 14)</td>
<td>±1 mm and 0,5 mm/1 500 mm</td>
</tr>
<tr>
<td>SR</td>
<td>Course of the curve of the running edge (Figure 13 / 14)</td>
<td>±1 mm and 0,5 mm/1 500 mm</td>
</tr>
<tr>
<td>HM</td>
<td>Height at machined area (Figure 19 / 20 / 21)</td>
<td>±0,5 (+ tolerance of height of rail)</td>
</tr>
<tr>
<td>TM</td>
<td>Thickness at machined area (minimum 3 points or every 1,5 m) (Figure 19 / 20 / 21)</td>
<td>±0,5 mm</td>
</tr>
<tr>
<td>IM</td>
<td>Inclination of the machined contact surface (Figure 19 / 20 / 21)</td>
<td>±0,5°</td>
</tr>
<tr>
<td>Not shown</td>
<td>Diameter of fishbolt holes</td>
<td>+1 mm / -0,5 mm</td>
</tr>
<tr>
<td>Not shown</td>
<td>Holes position relative to fishing surface</td>
<td>±1 mm</td>
</tr>
<tr>
<td>Not shown</td>
<td>Holes position relative to end of rail</td>
<td>±1,5 mm (for temporary fishplating ±3 mm)</td>
</tr>
<tr>
<td>Not shown</td>
<td>Chamfer of the holes</td>
<td>min. 0,5 mm</td>
</tr>
<tr>
<td>Not shown</td>
<td>Flatness of the underside of the switch rail</td>
<td>1 mm</td>
</tr>
<tr>
<td>Not shown</td>
<td>Roughness of machined running surface areas</td>
<td>Ra 6,3</td>
</tr>
</tbody>
</table>
Table 6 — Forging area (if applicable)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
<th>Tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not shown</td>
<td>Running table</td>
<td>0.3 mm/1 500 mm</td>
</tr>
<tr>
<td>Not shown</td>
<td>Running edge alignment</td>
<td>0.5 mm/1 500 mm</td>
</tr>
<tr>
<td>Not shown</td>
<td>End profile</td>
<td>Tolerance according to the rolled rail section</td>
</tr>
<tr>
<td>HC</td>
<td>Head profile (Figure 25)</td>
<td>An area of concavity may exist only on the opposite of the running edge. This shall not exceed 2 mm</td>
</tr>
<tr>
<td>LT</td>
<td>Transition length (Figure 25)</td>
<td>±10 %</td>
</tr>
<tr>
<td>HF</td>
<td>Height difference from one rail foot to the other rail foot (Figure 25)</td>
<td>±1 mm</td>
</tr>
</tbody>
</table>

Table 7 — Half set of expansion switches

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
<th>Tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>Constructional length (Figure 18)</td>
<td>±6 mm up to 24 m length</td>
</tr>
<tr>
<td></td>
<td></td>
<td>±8 mm greater than 24 m</td>
</tr>
<tr>
<td>SR</td>
<td>Straightness of the running edge (Figure 12 / 14)</td>
<td>±1 mm and 0.5 mm/1 500 mm</td>
</tr>
<tr>
<td>SR</td>
<td>Course of the curve of the running edge (Figure 13 / 14)</td>
<td>±1 mm and 0.5 mm/1 500 mm</td>
</tr>
<tr>
<td>CH</td>
<td>Switch – stock rail contact allowance (Figure 22 / 23)</td>
<td>max. 0.5 mm</td>
</tr>
<tr>
<td>LC 1 + LC 2</td>
<td>Lateral clearance at the slide chairs when clamped switch and stock rail modify at (Figure 22 / 23)</td>
<td>+1.5 mm / +0.5 mm</td>
</tr>
<tr>
<td>CP</td>
<td>Maximum allowance between tongue and slide plate (Figure 24)</td>
<td>1 mm</td>
</tr>
</tbody>
</table>

Table 8 — Full set of expansion switches

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
<th>Tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td>Gauge (Figure 18)</td>
<td>This tolerance shall be in accordance with the tolerance on the surrounding plain line track</td>
</tr>
</tbody>
</table>
Key

LA switch rail length
LS stock rail length
G gauge
L overall length

Figure 18 — Expansion switch parameters

Key

IM inclination of machined area
HR height of machined area

Figure 19 — Critical dimensions for machined rails
Key
IM inclination of machined area
HM height at machined area
TM thickness at machining reference plane

Figure 20 — Critical dimensions for machined rails – full depth switch rails
Figure 21 — Critical dimensions for machined rails – asymmetric switch rails

Key
IM inclination of machined area
HM height at machined area
TM thickness at machining reference plane
Key

CH contact switch to stock rail
LC1 contact stock rail to stud
LC2 contact switch rail to stud

Figure 22 — Critical dimensions for expansion switches – contact gaps
Key

CH contact switch to stock rail
LC1 contact stock rail to stud
LC2 contact switch rail to stud

Figure 23 — Critical dimensions for expansion switches – contact gaps
Key

CP flatness/maximum allowance between rail and base plate

Figure 24 — Critical dimensions for expansion switches – rail and base plate contact
5.6 Certification

All materials shall conform to the latest relevant European Standard.

In the absence of a relevant European Standard, material certification shall be in accordance with the requirements as laid down in 4.4.

The methods of examination required by the customer shall be clearly defined. Any certification required from such examination shall be stated by the customer.

5.7 Methods of examination for structural defects

5.7.1 Visual

This method of examination may be used on all types of expansion devices. In the event of a defect being suspected this may be followed by one or more of the other methods of examination.

5.7.2 Dye penetrant and/or magnetic particle

Dye penetrant can be used on all types of expansion devices. Magnetic particle methods can only be used on magnetic materials and are therefore not suitable for manganese materials.
6 Longitudinal resistance testing

6.1 Test method

Half the expansion device shall be installed on a fixed support (see Figure 26). One half set shall be fixed on its bearers complete with strap, slide chairs and low restraint fastenings. In case of curved track, the minimum radius shall be applied.

The device shall be arranged to its closed position (D_{min}). See Figure 1. All sliding faces shall be greased with the standard grease that is to be used during maintenance (if applicable).

One rail shall be fixed at the heel. An increasing longitudinal force shall be applied, to the opposite rail until this rail starts to move.

![Diagram of restraint test setup](image_url)

Key

1 pulled rail
2 blocked rail
3 strap (blocked)
F force
4 bearer (blocked)
5 fix link
6 low restraint fastening

Figure 26 — Restraint test setup

This movement of the rail shall be continued with a constant rate. The force needed shall be measured continuously. The procedure stops when the device is opened at its extreme position (D_{max}). See Figure 2.

The whole procedure shall start again in opposite direction.

During the test the maximum force shall be recorded.

6.2 Test results

The maximum resisting force shall be documented on a test result sheet.

7 Acceptance testing

Only when a prototype design is used, testing in accordance with 6.1 shall be required. The supplier shall perform all necessary testing to ensure that the customer can verify the prototype.
8 Limits and extent of supply

Limit and extent of supply shall include all components and special plates equipped with fastenings to the limits of the support panel. Requirements for rail lengths and additional items shall be agreed between customer and supplier and shown on the assembly plan.

9 Identification marks

Each half set of expansion device shall have an identification marking fixed on the switch rail and/or stock rail. The design of marking shall be agreed between customer and supplier.

The following information shall be marked:

— manufacturer’s mark;
— last two digits of year of manufacture;
— expansion capacity;
— unique identification number.

Other markings shall be specified by the customer.

The identification marks concerning dispatch shall be agreed between customer and supplier.
Relationship between this European Standard and the Essential Requirements of EU Directive 2008/57/EC

This European Standard has been prepared under a mandate given to CEN/ CENELEC/ ETSI by the European Commission and the European Free Trade Association to provide a means of conforming to Essential Requirements of the Directive 2008/57/EC.

Once this standard is cited in the Official Journal of the European Union under that Directive and has been implemented as a national standard in at least one Member State, compliance with the clauses of this standard given in Table ZA.1 for HS Infrastructure and in Table ZA.2 for CR Infrastructure confers, within the limits of the scope of this standard, a presumption of conformity with the corresponding Essential Requirements of that Directive and associated EFTA regulations.

Table ZA.1 — Correspondence between this European Standard, the HS TSI INF, published in OJEU dated 19th March 2008, and Directive 2008/57/EC

<table>
<thead>
<tr>
<th>Clause(s)/sub-clause(s) of this European Standard</th>
<th>Chapters/$/annexes of the TSI</th>
<th>Corresponding text, articles/$/annexes of the Directive 2008/57/EC</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 Design</td>
<td>4. Description of the infrastructure domain</td>
<td>Annex III Essential requirements</td>
<td>The HS TSI INF is not directly dealing with rail expansion devices. Indirect references can be found in chapter 4.2.13. - Track resistance and chapter 4.2.14 – Traffic load on structures.</td>
</tr>
<tr>
<td>4.1 Design inputs</td>
<td>4.2 Nominal track gauge</td>
<td>1. General requirements</td>
<td></td>
</tr>
<tr>
<td>4.2 Design rules</td>
<td>4.10 Track geometrical quality and limits on isolated defects</td>
<td>1.1 Safety Clauses 1.1.1 – 1.1.2 and 1.1.3</td>
<td></td>
</tr>
<tr>
<td>4.2.1 General rules</td>
<td>4.11 Rail inclination</td>
<td>1.2 Reliability and availability</td>
<td></td>
</tr>
<tr>
<td>4.2.2 Wheel/rail interaction</td>
<td>4.12 Switches and crossings</td>
<td>1.5 Technical compatibility</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.13 Track resistance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 Tolerances and inspection</td>
<td>4.14 Traffic load on structures</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.3 Critical dimensions</td>
<td>5. Interoperability constituents</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.6 Certification</td>
<td>5.1.1 Railhead profile</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 Longitudinal resistance testing</td>
<td>Annex A – Table A1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 Acceptance testing</td>
<td>5.3.1.1 Track geometrical quality and limits on isolated defects</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table ZA.2 — Correspondence between this European Standard, the CR TSI INF published in OJEU dated 14th May 2011, and Directive 2008/57/EC

<table>
<thead>
<tr>
<th>Clause(s)/sub-clause(s) of this European Standard</th>
<th>Chapters/§/annexes of the TSI</th>
<th>Corresponding text, articles/§/annexes of the Directive 2008/57/EC</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 Design</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.1 Design inputs</td>
<td>4. Description of the infrastructure subsystem</td>
<td>Annex III Essential requirements</td>
<td></td>
</tr>
<tr>
<td>4.2 Design rules</td>
<td>4.2.5.1 Nominal track gauge</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.2.1 General rules</td>
<td>4.2.5.6 Railhead profile for plain line</td>
<td>1. General requirements</td>
<td></td>
</tr>
<tr>
<td>4.2.2 Wheel/rail interaction</td>
<td>4.2.5.7 Rail inclination</td>
<td>1.1 Safety Clauses 1.1.1 – 1.1.2 and 1.1.3</td>
<td></td>
</tr>
<tr>
<td>5 Tolerances and inspection</td>
<td>4.2.6 Switches and crossings</td>
<td>1.2 Reliability and availability</td>
<td></td>
</tr>
<tr>
<td>5.3 Critical dimensions</td>
<td>4.2.7 Track resistance to applied loads</td>
<td>4.2.8 Structures resistance to traffic loads</td>
<td></td>
</tr>
<tr>
<td>5.6 Certification</td>
<td>4.2.8.2 Track geometrical quality and limits on isolated defects</td>
<td>1.5 Technical compatibility</td>
<td></td>
</tr>
<tr>
<td>6 Longitudinal resistance testing</td>
<td>6. Assessment of conformity of interoperability constituents and EC verification of the subsystems</td>
<td>The CR TSI INF is not directly dealing with rail expansion devices, indirect references can be found in chapter 4.2.7 – Track resistance to applied loads and chapter 4.2.8 – Structures resistance to traffic loads</td>
<td></td>
</tr>
<tr>
<td>7 Acceptance testing</td>
<td>6.2.4.7 Assessment of geometry of switches and crossings</td>
<td>Rails, fastenings and sleepers used for short length of track for specific purposes, for example in switches and crossings, at expansion devices, transition slabs and special structures, are not considered to be interoperability constituents according to § 5.2 of the CR TSI INF</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6.2.5.2 Assessment of track resistance for switches and crossings</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

WARNING — Other requirements and other EC Directives may be applicable to the product(s) falling within the scope of this standard.
BSI Group
Headquarters 389
Chiswick High Road,
London, W4 4AL, UK
Tel +44 (0)20 8996 9001
Fax +44 (0)20 8996 7001
www.bsigroup.com/
standards

BSI - British Standards Institution

BSI is the independent national body responsible for preparing British Standards. It presents the UK view on standards in Europe and at the international level. It is incorporated by Royal Charter.

Revisions

British Standards are updated by amendment or revision. Users of British Standards should make sure that they possess the latest amendments or editions.

It is the constant aim of BSI to improve the quality of our products and services. We would be grateful if anyone finding an inaccuracy or ambiguity while using this British Standard would inform the Secretary of the technical committee responsible, the identity of which can be found on the inside front cover. Tel: +44 (0)20 8996 9000. Fax: +44 (0)20 8996 7400.

BSI offers members an individual updating service called PLUS which ensures that subscribers automatically receive the latest editions of standards.

Buying standards

Orders for all BSI, international and foreign standards publications should be addressed to Customer Services. Tel: +44 (0)20 8996 9001. Fax: +44 (0)20 8996 7001 Email: orders@bsigroup.com You may also buy directly using a debit/credit card from the BSI Shop on the Website http://www.bsigroup.com/shop

In response to orders for international standards, it is BSI policy to supply the BSI implementation of those that have been published as British Standards, unless otherwise requested.

Information on standards

BSI provides a wide range of information on national, European and international standards through its Library and its Technical Help to Exporters Service. Various BSI electronic information services are also available which give details on all its products and services. Contact Information Centre. Tel: +44 (0)20 8996 7111 Fax: +44 (0)20 8996 7048 Email: info@bsigroup.com

Subscribing members of BSI are kept up to date with standards developments and receive substantial discounts on the purchase price of standards. For details of these and other benefits contact Membership Administration. Tel: +44 (0)20 8996 7002 Fax: +44 (0)20 8996 7001 Email: membership@bsigroup.com

Information regarding online access to British Standards via British Standards Online can be found at http://www.bsigroup.com/BSOL

Further information about BSI is available on the BSI website at http://www.bsigroup.com

Copyright

Copyright subsists in all BSI publications. BSI also holds the copyright, in the UK, of the publications of the international standardization bodies. Except as permitted under the Copyright, Designs and Patents Act 1988 no extract may be reproduced, stored in a retrieval system or transmitted in any form or by any means – electronic, photocopying, recording or otherwise – without prior written permission from BSI.

This does not preclude the free use, in the course of implementing the standard, of necessary details such as symbols, and size, type or grade designations. If these details are to be used for any other purpose than implementation then the prior written permission of BSI must be obtained.

Details and advice can be obtained from the Copyright and Licensing Manager. Tel: +44 (0)20 8996 7070 Email: copyright@bsigroup.com

Copyright British Standards Institution
Provided by IHS under license with BSI - Uncontrolled Copy
No reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---
--`,,```,,,,````-`-`,,`,,`,`,,`---